

Some Observations on Equation-Based Rate Control

Milan Vojnović

Jointly with Jean-Yves Le Boudec

Institute for computer Communications and Applications

September 19, 2001

Control System that We Study

f is a loss-throughput formula

 $\{T_n\}$ are rate-update instants

 \bar{p} is the long-run loss-event ratio

 \widehat{p}_n is estimator of \overline{p} at T_n

Control System that We Study (cont'd)

Rate controlled as:

$$X_n = f(\hat{p}_n) \tag{1}$$

where X_n is the sending rate at T_n

and
$$x(t) = X_n$$
, $T_n \le t < T_{n+1}$

Why we Study Such a Rate Control?

Such rate controls are proposed for media streaming over the Internet.

In the Internet, function f relates \bar{p} to the throughput of a TCP source.

In fact, f is also function of some round-trip time statistics (we focus only on the loss-originating effects)

It is required that the rate control is TCP-friendly.

TCP-friendliness: Under the same operating conditions, the rate control does not achieve higher throughput than a TCP source.

Some Typical Functions f

Padhye at al approximate formula (ToN, 8(2), 2000):

$$f(p) = \frac{1}{\tau a p^{1/2} + \rho b p^{3/2} + \rho c p^{5/2}}$$
 (pcks/sec)

where τ and ρ are round-trip time and TCP retransmission timeout, respectively, and a,b,c positive-valued constants.

Problem

Does it hold

$$\mathbb{E}[x(t)] \leq f(\bar{p}) ?$$

If yes, we say the control is conservative.

If the control is conservative, then it is TCP-friendly.

Two Special Assumptions

(A1) $\{T_n\}$ are the loss-event instants

(A2) $1/\hat{p}_n$ is an unbiased estimator of $1/\bar{p}$

Both assumptions motivated by TFRC proposal (www.aciri.org/tfrc).

With TFRC, $\hat{p}_n = 1/\hat{\theta}_n$, where

$$\widehat{\theta}_n = \sum_{l=1}^L w_l \theta_{n-l+1}$$

where w_l , $l=1,\ldots,L$, are some positive numbers summing to unity, and θ_n is the number of the packets sent in $[T_n,T_{n+1})$

Note, for ergodic system: $\bar{p}=1/\mathbb{E}[\theta_0]$

Thus,
$$\mathbb{E}[1/\widehat{p}_n] = \mathbb{E}[\widehat{\theta}_n] = \mathbb{E}[\theta_0] = 1/\overline{p}$$

 \Rightarrow (A2) verified

Some Preliminary Observations

For f(p) concave with 1/p:

$$\mathbb{E}[X_n] \le f(\bar{p})$$

- ullet But $\mathbb{E}[x(t)]$ is not the same as $\mathbb{E}[X_n]$
- $\mathbb{E}[X_n]$ is the expected rate at special time points; it is the rate as seen at loss-event instants (Palm expectation)

Some Preliminary Observations (cont'd)

Relation between $\mathbb{E}[x(t)]$ and $\mathbb{E}[X_n]$ depends on the statistics of the point process $\{T_n\}$

By Palm inversion formula:

$$\mathbb{E}[x(t)] = \frac{\mathbb{E}[X_n \sigma(X_n)]}{\mathbb{E}[\sigma(X_n)]}$$

where
$$\sigma(x) := \mathbb{E}[S_n | X_n = x]$$

and
$$S_n = T_{n+1} - T_n$$

Main Result

Theorem 1 If

(C1) f(p) is concave with 1/p and

(C2) $\sigma(x)$ is non-increasing with x,

then

$$\mathbb{E}[x(t)] \le f(\bar{p})$$

in other words, the control is conservative.

The theorem identifies sufficient conditions under which the control is provably conservative.

Discussion of the Sufficient Condition (C1) f(p) is concave with 1/p

ullet True for some simple functions f

E.g., the square-root formula

ullet Not true for small values of 1/p with more complex f

E.g., as seen earlier for Padhye et al formula

Discussion of the Sufficient Condition (C2) $\sigma(x)$ is non-increasing with x

If there exists a hidden congestion state that evolves slowely, then, the expected time between losses given the rate x may become NOT non-increasing with x.

Validation by Modeling

The general model is:

$$X_{n+1} = f(1/\sum_{i=1}^{L} w_i X_{n-l+1} S_{n-l+1})$$

Note: $\theta_n = X_n S_n$

Suppose $\{S_n\}$ is a stationary random process.

Then, the model is an autoregressive process with stationary random coefficients.

Two Special Cases

f is non-linear \Rightarrow the throughput not computed for the general model.

We study two special cases:

Case 1) the square-root formula with L=1

Case 2) the linearized system with $L \geq 1$

We consider a simple case: $\{S_n\}$ governed by a hidden discrete-time Markov chain $\{Z_n\}$.

Details omitted. For a 2-state hidden Markov chain, we compute the throughput numerically for Case 1) and a closed-form expression is retrieved for Case 2).

Some Numerical and Simulation Results

Case 1) the square-root formula with L=1

Note: p and q are transition probabilities of the 2-state hidden Markov chain

Some Numerical and Simulation Results (cont'd)

Case 2) the linearized system with $L \geq \mathbf{1}$

Note: p and q are transition probabilities of the 2-state hidden Markov chain

Discussion of the Results

- There exists statistics of the loss-event interarrival times such that the control is nonconservative
 - Condition (C1), f(p) is concave with 1/p, is true
 - Condition (C2), $\sigma(x)$ is non-increasing with x, must not be true in the non-conservative regime
- 2) The non-conservative behavior comes with positively correlated loss-event inter-arrival times (not shown in the slides)
- 3) The analytical results for the linearized system deviate from the simulations for small q to p ratio (this is explained by increased variance $Var[S_0] \sim q/p$)

Overly Conservative Nature of the Control

Several empirical studies reported elsewhere indicate: *TFRC* is overly conservative as the loss-event ratio gets high.

We identify a cause of this phenomena.

Overly Conservative Nature of the Control

Consider the f used in TFRC:

$$f(p) = \frac{1}{\tau a p^{1/2} + \rho b p^{3/2} + \rho c p^{5/2}}$$
 (pcks/sec)

where τ and ρ are round-trip time and TCP retransmission timeout, respectively, and a,b,c positive-valued constants.

Overly Conservative Nature of the Control (cont'd)

Consider Bernoulli (q) packet loss model; then

$$\sigma(x) = \frac{1}{qx}$$

And:

$$\mathbb{E}[x(t)] = \frac{1}{\mathbb{E}[\frac{1}{X_n}]}$$

$$= \frac{1}{\mathbb{E}[\frac{1}{f(\hat{p}_n)}]}$$

$$= \frac{1}{\tau a \mathbb{E}[\hat{p}_n^{1/2}] + \rho b \mathbb{E}[\hat{p}_n^{3/2}] + \rho c \mathbb{E}[\hat{p}_n^{5/2}]}$$

$$\leq \frac{1}{\tau a \bar{p}^{1/2} + \rho b \bar{p}^{3/2} + \rho c \bar{p}^{5/2}}$$

Observations:

- 1) $\hat{p}_n^{1/2}$, $\hat{p}_n^{3/2}$ and $\hat{p}_n^{5/2}$ terms are all convex with respect to $1/\hat{p}_n$
- 2) $\widehat{p}_n^{3/2}$ and $\widehat{p}_n^{5/2}$ come into play for high loss-event ratio
- 3) they are steep in this region and convexity is resulting in the overly conservative throughput

Overly Conservative Nature of the Control: Numerical Example

<u>Note</u>: With the square-root formula the phenomena does not exist; with the approximate Padhye et al formula, yes.

Two Origins of a Conservative Control

- (1) the rate update at loss-event instants
- (2) non-linearity of f (concavity)

Note, given that our sufficient conditions hold:

$$\mathbb{E}[x(t)] \stackrel{(1)}{<} \mathbb{E}[f(\hat{p}_n)] \stackrel{(2)}{<} f(\bar{p})$$

Some Variants of the Control

Some rate controls do not update the rate at the loss-event instants

(e.g., the rate updated upon receiving periodic RTP reports from the receiver)

In such a case, it is reasonable to suppose $\{S_n\}$ be an i.i.d. random process and thus:

$$\mathbb{E}[x(t)] = \mathbb{E}[X_n]$$

We consider two cases ...

Some Variants of the Control: First Case

 \widehat{p}_n is unbiased estimator of $ar{p}$

and f(p) convex with p

Then

$$\mathbb{E}[x(t)] \geq f(\bar{p}) \ (= \text{ iff } \hat{p}_n \equiv \bar{p})$$

Note: the control is always non-conservative.

Example: $\widehat{p}_n = \sum_{l=1}^L \mathbb{1}_{Z_{N(T_n)-l+1}=1}$

where $Z_n = 1$ if the n-th packet is lost,

 $Z_n = 0$, otherwise

 $N(T_n)$ is the sequence number of the latest packet sent before T_n ; for simplicity, the feedback delay ignored

Some Variants of the Control: Second Case

 $1/\widehat{p}_n$ is unbiased estimator of $1/\overline{p}$

and f(p) convex with 1/p

Then

$$\mathbb{E}[x(t)] \ge f(\bar{p}) \ (= \ \text{iff} \ \hat{p}_n \equiv \bar{p})$$

Note: the control is always non-conservative.

Example: $\hat{p}_n = \sum_{l=1}^L w_l \theta_{n-l+1}$

and f(p) Padhye at al formula for large p

Conclusion

We believe our results would help us in understanding and designing valid rate controls.

In particular, we show:

- 1) Sufficient conditions ensuring a conservative control.
- 2) A cause of an overly conservative nature of a TFRC-like control for high loss rate.

How do we eliminate non-linearity effects?

- ⇒ increase the smoothing of the loss estimator
- \Rightarrow diminishes responsiveness \Rightarrow Trade-off

Further Details

M. Vojnović and J.-Y. Le Boudec, "Some Observations on Equation-Based Rate Control", ITC-17, Salvador de Bahia, Brazil, 2001.

On-line at:

http://icawww.epfl.ch/vojnovic