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Control System that We Study

Internet
E Send rate E
x(Tn) = f(ﬁn)
#

Rate-controlled source zp Receiver

lost packets
]

f is a loss-throughput formula
{T»} are rate-update instants
p iIs the long-run loss-event ratio

pn 1S estimator of p at 1T,



Control System that We Study (cont'd)

Rate controlled as:

where X,, is the sending rate at T,

and z(t) = Xn, Th <t <TpH41
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Why we Study Such a Rate Control?

Such rate controls are proposed for media
streaming over the Internet.

In the Internet, function f relates p to the
throughput of a TCP source.

In fact, f is also function of some round-trip

time statistics
(we focus only on the loss-originating effects)

It is required that the rate control is TCP-
friendly.

T CP-friendliness: Under the same operating
conditions, the rate control does not achieve
higher throughput than a TCP source.



Some Typical Functions f
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Padhye at al approximate formula (ToN, 8(2),
2000):
1
TP = b2 ¥ o2 pep T
where 7 and p are round-trip time and TCP retrans-

(pcks/sec)

mission timeout, respectively, and a,b, ¢ positive-valued
constants.



Problem

Does it hold

Elz(®)] < f(p) 7

If yes, we say the control is conservative.

If the control is conservative, then it is TCP-
friendly.



Two Special Assumptions
(A1) {7y} are the loss-event instants

(A2) 1/pyn is an unbiased estimator of 1/p
Both assumptions motivated by TFRC proposal
(www.aciri.org/tfrc).

With TFRC, p, = 1/6,, where

L
On, = Zwlen—l—{—l
=1

where w;, l = 1,...,L, are some positive numbers sum-
ming to unity, and 6, is the number of the packets sent

in [Tn,Tn_|_1)
Note, for ergodic system: p = 1/E[6g]

Thus, E[1/p,] = E[0,] =E[6p] = 1/p

= (A2) verified



Some Preliminary Observations

For f(p) concave with 1/p:

E[Xn] < F(p)

e But E[z(¢)] is not the same as E[X,]

e E[X,] is the expected rate at special time
points; it is the rate as seen at loss-event
instants (Palm expectation)



Some Preliminary Observations (cont'd)

Relation between E[z(¢)] and E[X,,] depends on
the statistics of the point process {75}

By Palm inversion formula:

E[Xno(Xn)]

MOl = o)




Main Result

Theorem 1 If
(C1) f(p) is concave with 1/p and
(C2) o(x) is non-increasing with z,

then
Elz(t)] < f(p)

in other words, the control is conservative.

The theorem identifies sufficient conditions un-
der which the control is provably conservative.



Discussion of the Sufficient Condition (C1)
f(p) is concave with 1/p

e True for some simple functions f

E.g., the square-root formula
e Not true for small values of 1/p with more

complex f

E.g., as seen earlier for Padhye et al formula
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Discussion of the Sufficient Condition (C2)
o(x) is non-increasing with x

If there exists a hidden congestion state that
evolves slowely, then, the expected time be-

tween losses given the rate x may become NOT
non-increasing with x.
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Validation by Modeling

The general model is:

L
Xp+1 = f(1/ Z Wi Xy 14+15n—141)

=1
Suppose {S,} is a stationary random process.

Then, the model is an autoregressive process
with stationary random coefficients.
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Two Special Cases

f is non-linear = the throughput not computed
for the general model.

We study two special cases:

Case 1) the square-root formula with L =1

Case 2) the linearized system with L > 1

We consider a simple case: {S,} governed by a hidden
discrete-time Markov chain {Z,}.

Details omitted. For a 2-state hidden Markov chain, we
compute the throughput numerically for Case 1) and a

closed-form expression is retrieved for Case 2).
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Some Numerical and Simulation

Results

Case 1) the square-root formula with L =1
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Some Numerical and Simulation Results
(cont'd)

Case 2) the linearized system with L > 1
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Note: p and g are transition probabilities of the 2-state
hidden Markov chain
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Discussion of the Results

1) There exists statistics of the loss-event inter-
arrival times such that the control is non-
conservative

e Condition (C1), f(p) is concave with
1/p, is true

e Condition (C2), o(x) is non-increasing
with z, must not be true in the non-
conservative regime

2) The non-conservative behavior comes with
positively correlated loss-event inter-arrival
times (not shown in the slides)

3) The analytical results for the linearized sys-
tem deviate from the simulations for small
g to p ratio (this is explained by increased
variance Var[Sg] ~ q/p)
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Overly Conservative Nature of the Control
Several empirical studies reported elsewhere in-
dicate: TFRC is overly conservative as the

loss-event ratio gets high.

We identify a cause of this phenomena.
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Overly Conservative Nature of the Control

Consider the f used in TFRC:

1
Tap1/2 + pbp3/2 + pCp5/2

f(p) = (pcks/sec)

where 7 and p are round-trip time and TCP
retransmission timeout, respectively, and a,b, c
positive-valued constants.
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Overly Conservative Nature of the Control
(cont'd)

Consider Bernoulli (g) packet loss model; then

1
o(z) = —
qx
And:
E[z(t)] = E[L]
°f
= 1
Elreom! .
 TaElpy 1+ pbELpy 1+ pcElpy ]
S Tapt/ 2+pbz33/ 2+pcp°/2

Observations:

1) 13,1/2, ﬁf;/Q and pn/ terms are all convex with respect
to 1/pn

2) p ‘3/2 and pn/2 come into play for high loss-event ratio

3) they are steep in this region and convexity is result-
ing in the overly conservative throughput

19



Overly Conservative Nature of the Control:
Numerical Example

f(p) versus 1/p
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Note: With the square-root formula the phenomena
does not exist: with the approximate Padhye et al for-
mula, yes.
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Two Origins of a Conservative Control
(1) the rate update at loss-event instants
(2) non-linearity of f (concavity)

Note, given that our sufficient conditions hold:

(1) (2)
Elz(9)] < Elf(pn)] < f(p)
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Some Variants of the Control
Some rate controls do not update the rate at
the loss-event instants
(e.g., the rate updated upon receiving periodic RTP
reports from the receiver)
In such a case, it is reasonable to suppose {Sn}
be an i.i.d. random process and thus:

Elz(t)] = E[Xy]

We consider two cases ...
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Some Variants of the Control: First Case
prn, IS unbiased estimator of p
and f(p) convex with p

Then

Elz(¢)] > f(p) (= iff pn =p)

Note: the control is always non-conservative.

Example: p, = Zle L Zyenyima=1
where Z, = 1 if the n-th packet is lost,

Z, = 0, otherwise

N(T,) is the sequence number of the latest packet sent

before T,,; for simplicity, the feedback delay ighored
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Some Variants of the Control: Second Case
1/pn is unbiased estimator of 1/p
and f(p) convex with 1/p

Then
Elz(t)] = f(p) (= iff pn =p)
Note: the control is always non-conservative.

Lo~ L
Example: p, = ), wibn_i4+1

and f(p) Padhye at al formula for large p
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Conclusion

We believe our results would help us in under-
standing and designing valid rate controls.

In particular, we show:

1) Sufficient conditions ensuring a conserva-
tive control.

2) A cause of an overly conservative nature of
a TFRC-like control for high loss rate.

How do we eliminate non-linearity effects?

= increase the smoothing of the loss estimator
= diminishes responsiveness = Trade-off
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Further Details

M. Vojnovi€ and J.-Y. Le Boudec, “Some Observations
on Equation-Based Rate Control”, ITC-17, Salvador de
Bahia, Brazil, 2001.

On-line at:

http://icawww.epfl.ch/vojnovic
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